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Purpose. The purpose of this study was to identify the key physico-
chemical molecular properties of polymeric materials responsible for
gaseous diffusion in the polymers.

Methods. Quantitative structure-property relationships, QSPRs were
constructed using a genetic algorithm on a training set of 16 polymers
for which CO,, N,, O, diffusion constants were measured. Nine physi-
cochemical properties of each of the polymers were used in the trial
basis set for QSPR model construction. The linear cross-correlation
matrices were constructed and investigated for colinearity among the
members of the training sets. Common water diffusion measures for
a limited training set of six polymers was used to construct a “semi-
QSPR” model.

Results. The bulk modulus of the polymer was overwhelmingly found
to be the dominant physicochemical polymer property that governs
CO,, N, and O, diffusion. Some secondary physicochemical properties
controlling diffusion,including conformational entropy, were also iden-
tified as correlation descriptors. Very significant QSPR diffusion mod-
els were constructed for all three gases. Cohesive energy was identified
as the main correlation physicochemical property with aqueous diffu-
sion measures.

Conclusions. The dominant role of polymer bulk modulus on gaseous
diffusion makes it difficult to develop criteria for selective transport
of gases through polymers. Moreover,high bulk moduli are predicted
to be necessary for effective gas barrier materials. This property require-
ment may limit the processing and packaging features of the material.
Aqueous diffusion in polymers may occur by a different mechanism
than gaseous diffusion since bulk modulus does not correlate with
aqueous diffusion, but rather cohesive energy of the polymer.
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INTRODUCTION

The permeability of polymeric materials is an important
consideration in the pharmaceutical industry. Many pharmaceu-
tical preparations need to be protected from oxygen, water
vapor, carbon dioxide and other gaseous penetrants. The poly-
meric packaging material for the preparation must serve as an
effective barrier to gaseous diffusion. In other applications, the
polymeric material serves as a core to the controlled release of
an active biological agent. Solubility and diffusion of the (usu-
ally) small organic biological agent in the polymer matrix is
central to the controlled release behavior.
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Permeability, P, solubility, s, and diffusivity, d, are related
by the relationship

P=sxd 1)

In this study, we have focused upon diffusivity and in particular,
the diffusion coefficient, D, of a particular gas in a particular
polymer matrix at a fixed temperature, T. In these systems,
gas diffusion is a random kinetic process and the Van’t Hoff-
Arrhenius relationship holds,

D(T) = Dy exp(—E/RT) )

where, D, is the pre-exponential factor, Ep is the activation
energy for diffusion, and R is the gas constant.

The composite characterization of diffusion of gases and
small organics in polymers consists of a collection of indepen-
dent experimental studies on a small number of polymers and
diffusing agents for particular applications. There has been little
effort in establishing a unified theory/model across a range of
polymers of diverse structure and/or a range of penetrant agents.
Moreover, molecular mechanisms of diffusion remain largely
qualitative descriptions consistent with experimental observa-
tions. However, computer-assisted molecular design, CAMD, is
a tool which may facilitate the realization of a unified molecular
understanding of diffusion. In this paper we report the findings
of a CAMD analysis of the diffusion of CO,, N; and O, through
a set of polymeric materials. The specific CAMD technique
used in this study is quantitative structure property relationship,
QSPR, analysis (1).

The CAMD approaches that can be used to estimate the
diffusion of small penetrant molecules through poly meric mate-
rials are theoretical models (2-4), molecular simulations (5-7),
QSPR analysis (1,8) and combinations from these three gen-
eral approaches.

QSPR analysis is the method used in the study reported
here. The first step is to assemble the modeling data in the
form of a training set. Three types of QSPR training sets can
be considered modeling small molecule diffusion in polymers,

i. A training set with one common polymer, a series of
diffusing chemical entities, and the corresponding observed
diffusion measures.

ii. A training set with a series of different polymers, a
single,common diffusing chemical entity, and the corresponding
observed diffusion measures.

iii. A training set with different polymers, different types
of diffusing chemical entities, and the corresponding observed
diffusion measures.

The next step in the QSPR analysis consists of the compu-
tation of a trial basis set of physicochemical molecular proper-
ties of the polymers and/or diffusing chemical entities. The
final step is to establish a statistical relationship between the
observed diffusion measures (dependent variable) and members
of trial basis set. The most robust and significant statistical
relationships,or QSPR models, then serve as guidelines to both
understand diffusion processes and to forecast diffusion behav-
ior in new systems.

QSPR models have the capacity to be predictive at the
molecular level, are relatively easy to construct, use, and inter-
pret since one can directly evaluate the relative importance of
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Table 1. The Training Set of Polymers and Calculated Measures of the QSPR Descriptors for Construction of Diffusion QSPRS for CO,, O,

and N,
—log D* —log D —log D S Eq E, E_ Eo B p \2
Polymer CO, 0, N, cal/mole/’ AMU Kcal/mole Kcal/mole Kcal/mole Jicm® 10°N/m? g/cm3 em*/mole

Poly(ethylene terephthalate)  8.83 844 870 1.96 384 —2.59 -2.10 -0.22 5404 74 1.33 1442
Poly(bispenol-A-carbonate)  8.32 768  7.82 0.53 635 —4.13 -1.26 —053 4358 53 120 2110
Polyoxymethylene 7.62 743 7.68 3.30 150 —0.86 —-1.53 0.69 3454 74 1.25 24.0
cis-1,4-polyisoprene 5.96 5.80 5.96 1.51 265 -—1.57 0.55 —-0.63 308.6 1.8 0.90 757
Polystyrene 722 696 7.22 1.00 343 326 -1.09 —-0.59 4068 52 1.05 100.6
Poly(ethyl methacrylate) 7.52 696  7.60 1.53 260 —2.15 -1.79 -0.56 380.1 43 .12 1024
Polyethylene 6.43 634  6.49 430 140 —1.39 0.45 -0.26 2985 3.6 0.86 329
Polytetrafluoroethylene 7. 6.83 7.00 1.48 325 —1.69 —-1.27 -0.16 3436 3.6 2.00 495
Polybutadiene 5.98 582 596 2.19 195 -1.30 0.93 -0.89 3048 25 0.89 60.7
Polyisobutylene 7.22 710 730 1.22 280 —2.50 0.77 —-0.66 237.0 26 0.84 66.8
Poly(vinyl chloride) 8.60 791 8.40 0.80 310 -1.93 -0.90 —-046 4417 53 1.39 452
Poly(vinyl acetate) 7.52 730 752 2.15 263 —1091 —2.49 035 4293 59 1.19 722
Poly(dimethyl butadiene) 7.20 685 7.07 1.48 335 -—-1.83 0.16 -037 3166 3.2 0.88 89.7
Polychloroprene 6.57 637 654 1.51 396 —2.09 —2.31 085 4221 23 1.21 737
Poly(2,6-diphenyl-1,4-

phenylene oxide) 6.41 6.14 6.37 0.78 615 —345 —0.88 ~0.75 498.0 48 1.14  211.7
Poly(dimethyl siloxane) 482 460 482 1.22 370 -197 -0.31 029 2138 07 0.98 75.6

Error®  *6.1%  *58% *3.8% *4.6%

4 D is in cm2/s at 25°C.

b Error refers to the average error of predicting a property using the Van Krevelen GAP method.

the various physicochemical molezular properties in the model.
A QSPR model, on the other hand, is only as good as the training
set and corresponding computed physicochemical molecular
properties from which it is derived. Further, it may not provide
mechanistic insight.

QSPR approaches have been used to predict several poly-
mer properties including diffusion and other transport measures.
Combinations of the three approaches described above, theoreti-
cal, simulation and QSPR analysis can be used. Most likely,
simulation generated physicochemical property measures are
used as a part of the trial basis set nf independent variables to
construct a QSPR, as well as to atternr::t to elucidate the molecu-
lar mechanism of diffusion.

METHODS

Dependent Measures

The training set used to construct the diffusion QSPR
models consists of sixteen polymers. The dependent variable
is log D, where D is the measured diffusion constant for a
simple gas diffusing through each of the polymer matrices at
25°C (9). Carbon dioxide (CO,), oxygen (O,) and nitrogen (N,)
are the three gases which have been modeled in this study.
Table I provides a list of the polymers and the respective log
D values for CO,, O,, and N,.

Aqueous diffusion in polymeric materials is important to
study and model, but comparable experimental data in the open
literature is quite limited. Six polymers for which aqueous
diffusion under common conditions has been measured (9)
was assembled and used in “semi-QSPR” analysis as part of
this investigation.

Clearly, our QSPR modeling would benefit from larger
training sets of diffusion measures in polvmers. Unfortunately,

the training sets reported here are the best sets of comparable
data we could assemble.

Independent Measures

Nine physicochemical properties were considered as the
trial basis set of independent variables. These properties, their
descriptions and symbols are listed as part of Table IL. Torsion
angle unit, TAU, theory (10) was used to compute S, M, E,,
E,, E_. S is the torsion angle conformational entropy of the
monomer repeat unit. S reflects the conformational freedom
(molecular flexibility) available to the polymer chain. M is the
monomeric molecular mass of the polymer, and is used to
measure the ease/difficulty of moving/displacing a polymer

Table II. The Parent Set of QSPR Diffusion Descriptors for the Poly-
mer Training Set

Characteristic Descriptor Symbol(s)

w

Conformational entropy
Monomer molecular weight

M
Bulk modulus B
Cohesive energy density E

Intrachain flexibility

Interchain flexibility

Intrinsic molecular free

volume Amorphous/rubbery density p

Rubbery molar volume V;
Polymer matrix—

diffusing agent Molecular field of the

interaction polymer chain
« Dispersion field Eq4
* Positive charge field E,
* Negative charge field E_
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chain segment. E4, E,, and E_ are the monomer molecular field
descriptors for the polymer generated using steric, positive
charge and negative charge probes, respectively. These descrip-
tors model the potential field of a monomer, and, hence, the
local intermolecular interaction profile of the polymer chain.

The Van Krevelen group additive property, GAP, approach
was used to calculate E,, B, p, and V, (11). E, is a the cohesive
energy density which measures the polymer matrix packing
energy per unit volume. The square root of E, is the solubility
parameter. B is the bulk modulus of the amorphous form of
the polymer, and is a measure of the elasticity of the polymer
matrix. p and V, are the density and molar volume of the
rubbery state, respectively, of the (amorphous) polymer. These
descriptors were selected in order to provide a comprehensive
trial basis set of properties which could reasonably be expected
to be related to diffusion behavior.

D is an intensive material property while M and V, are
extensive properties. This mixing of property types can be
“justified” in the spirit of QSPR analysis where property
descriptors in a QSPR model can be “masked variables”
reflecting behavior different from their direct interpretation.
For example, we view the role of monomer molecular weight,
M, as refelcting ease/difficulty of kinetic segmental motion in
the polymer matrix.

Statistical Methods

Multivariate linear regression, MLR, analysis and con-
struction of data set cross-correlation matrices were used to
evaluate trial QSPR models. The Genetic Function Approxima-
tion, GFA, (12) a genetic algorithm, GA, (13), was applied to
three training sets containing log D values for CO,, O,, and N,.
GFA is a hybrid of the Hollands GA (14) and the Multivariate
Adaptive Regression Splines (MARS) (15) algorithms. By com-
bining the MARS and GA approaches, one is able to signifi-
cantly reduce the large function space that MARS explores,
while simultaneously making effective use of the GA to more
fully combine trial basis set descriptors. The general procedure
used to evolve the QSPR diffusion models is given in reference
(16). The GFA experiments for diffusion modeling were carried
out using both linear and quadratic descriptor terms in the trial
basis sets. The smoothing factor d (12) was assigned a value
of “1”. The GFA experiments were monitored for 10,000 cross-
overs in order to ascertain convergence of independent variable
usage during QSPR model evolution. In each case the cross-
correlation descriptor matrix was examined to eliminate trial
QSPRs in which pairs of unique descriptors had cross-correla-
tion coefficients greater than 0.50. Analogs were considered
outliers when the difference in predicted and observed energies
equaled or exceeded 2.0 standard deviations from the mean.
Regression analyses were performed minus the outliers and
examined to see if significant improvements in the regression
equations resulted.

RESULTS

The calculated values for the physicochemical molecular
properties, the trial basis set molecular descriptors, for each of
the polymers under investigation are listed in Table I. This table
also reports average estimation errors using the Van Krevelen
GAP method (11) by comparing calculated to observed values
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for some of the polymers in the training set. The absolute
average errors of estimation are approximately 6.1%, 5.8%,
3.8% and 4.6% for E_, B, p, and V,, respectively.

The composite training dataset containing the trial basis
set of QSPR molecular descriptors and the observed —log D
values for the three diffusing gases was first investigated for
linear pairwise variable cross-correlation. Table III contains
the cross-correlation coefficients (R) for individual pairs of
variables. This analysis indicates significant correlations, that
is high correlation coefficient values of 0.81, 0.82, and 0.83
between bulk modulus, B, and the —log D values of all three
penetrants, viz., CO,, N, and O,, respectively. E, is the next
most significant linear correlation descriptor with —log D hav-
ing moderate correlation coefficients of 0.65 for CO,, 0.63 for
N, and 0.62 for O,. E, has the third most significant linear
correlations with the —log D with negative correlation coeffi-
cients of —0.50, —0.51, and —0.49 for the —log D, of CO,,
N, and O,, respectively. The —log D values of CO,, N, and
O, have high cross-correlations to one another. For example,
the cross-correlation coefficient for the —log D values of N,
and O, is 0.99. There are also significant cross-correlations
among some of the descriptors including E4 and S (0.67), Eq4
and M (—0.87) and E, and E, (—0.71).

GFA analysis of CO, as a gas penetrant leads to QSPR
diffusion models with both linear and quadratic terms. The top
two- and three-descriptor QSPR diffusion models are reported
in Part A of Table IV. These models were selected on the
combined basis of their R? values and least squares error terms
(LSE). The top three-descriptor model has an R? value of 0.74
and a LSE of 0.27. This diffusion model shows B as the domi-
nant descriptor, consistent with the cross-correlation analysis,
and S also making a meaningful contribution. Those descriptors
appearing in quadratic form in the QSPR equations are charac-
terized by specifying their extrema values at the bottom of
each model summary. The “(max)” or “(min)” indicates if the
extremum value maximizes or minimizes the descriptor’s
impact on —log D. The polymer, poly(2,6-diphenyl-1,4-phenyl-
ene oxide) is an outlier of eq. 2 in Part A of Table IV. If this
polymer is eliminated from eq. 2, the new model, represented
by eq. 3, with an R? value of 0.87 and a LSE of 0.14 results.

The top two- and three-descriptor QSPR diffusion models
generated for N, diffusion by GFA analysis are reported in Part
B of Table IV. These models have R? values of 0.71 and 0.74
and LSE values of 0.26 and 0.24, respectively. Once again B
is the dominant descriptor. S is the other significant descriptor.
The polymer, poly(2,6-diphenyl-1,4-phenylene oxide) is a mar-
ginal outlier of eq. 2 in Part B of Table IV. If this polymer is
eliminated from eq. 2, the new model, represented by eq. 3,
with an R? value of 0.86 and a LSE of 0.13 results. Extremum
values of B were calculated and are reported for each of the
three QSPR models in Part B of Table IV.

QSPR diffusion models were also evolved for O, using
GFA. The top two- and three-descriptor QSPR diffusion models
generated for O, diffusion by GFA analysis are reported in Part
C of Table IV. In these equations, B is once again the most
significant independent variable while S is the second most
significant descriptor. The polymer, poly(2,6-diphenyl-1,4-phe-
nylene oxide) is an outlier of eq. 2 in Part C of Table IV. If this
polymer is eliminated from eq. 2, the new model, represented by
eq. 3, with an R? value of 0.85 and a LSE of 0.13 results.
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Table HIL Cross-Correlation Matrix for the QSPR Descriptors and Log D Values
-log D —log D —log D
S M Eq E, E_ Ee B P \Z: (COy (N2) ©y
S 1
M -0.73 1
Eq4 0.67 —0.87 1
E, 0.11 -0.27 0.23 1
E_ 0.33 —-0.17 0.36 -0.57 1
Ee —0.24 0.51 -049 -0.70 0.00 1
B 0.16 0.07 -0.19 —-0.60 0.11 0.71 1
p -0.17 0.19 —-0.02 -058 0.26 041 037 1
\Z —0.56 0.90 -088 —-022 —-037 057 022 -001 1
—log D (COp —0.12 0.14 -029 -050 -0.05 065 081 0.39 0.21 1
—log D (Nyp) -0.03 0.07 -024 -049 —0.01 062 083 0.39 0.15 099 1
—log D (0y) —0.06 0.05 -023 051 -002 063 0.82 0.39 0.14 099 0.99 1

GFA crossover plots associated with the evolution of opti-
mizing the QSPR diffusion models of CO,, N, and O, are given
in Figure 1. Each curve of descriptor usage versus crossover
operation number reaches a plateau after about 4000 crossovers
in the GFA experiments which indicates a convergent optimiza-
tion of each of the QSPR models. Thus, the models reported
in Table IV are the respective “best” models that can be realized
for the trial basis sets (descriptors) used in the experiments.

The bulk modulus, B, is the only independent variable
used in more than 80% of the QSPR models during optimization
by the evolution process of GFA for all three gases. B is also

Table IV. The Top Two- and Three-Descriptor QSPR Diffusion Mod-
els For A) CO,, B) N, and C) O, Derived from the GFA Analysis

Part A: For CO, gas as a penetrant

1. —logD =564 + 046 B — 027 S
N =16 R? = 0.71 LSE = 0.29

2. ~logD = 497 + 0.82B — 0.04 B> — 0.24 S
N =16 R? = 0.74 LSE = 0.27
B(max) = 9.53

3. —logD =497 + 0.82B — 0.04 B2 ~ 024 S
N=15 R? = 0.87 LSE = 0.14
B(max) = 8.25

Part B: For N, gas as a penetrant

1. ~log D = 459 + 0.83 B — 0.05 B?
N =16 R? = 0.71 LSE = 0.26
B(max) = 8.54

2. —logD =491 + 0.79B — 0.04 B2~ 0.16 S
N =16 R? = 0.74 LSE = 0.24
B(max) = 9.42

3. ~log D = 4.82 + 0.95B ~ 0.06 B> - 0.25 S
N =15 R? = 0.86 LSE = 0.13
B(max) = 8.21

Part C: For O, gas as a penetrant

1. —log D = 451 + 0.77 B — 0.04 B?
N =16 R? = 0.72 LSE = 0.23
B(max) = 8.89

2. ~logD =477+ 073B -~ 004B?> - 0.13 S
N =16 R? = 0.73 LSE = 0.22
B(max) = 9.73

3. —logD = 497 + 088 B — 005B> - 0228
N=15 R? = 0.85 LSE = 0.13
B(max) = 8.39

the most significant QSPR descriptor for all three gases and
appears as a linear term and in most cases as a quadratic term
in the optimized (best) QSPR models for each gas. Conse-
quently, the values of B(max) in the three optimized gas diffu-
sion QSPR models reflect the comparative impact of B on —log
D. That is, the values of B(max) in eqgs. 2 and 3 in Table IV,
Parts A—C permit a comparison of the differences among the
three gases due to the bulk modulus of the polymer matrix.
Oxygen is predicted to be least retarded (greatest value of
B(max) predicted) in diffusion, while CO, and N, are predicted
to be very similar in diffusion behavior, as governed by B,
since their B(max) values are nearly the same.

Aqueous diffusion measures at T = 25°C were found in
the literature for the six polymers listed in Table V. The nine
physicochemical properties given in Table II, and used in the
gas diffusion QSPR analyses, were employed to construct a
“semi-QSPR” model using step-wise linear regression analysis.
Six observations, polymers, is not a large enough training set
for the meaningful application of GFA. No significant correla-
tion was found between —log (D) for aqueous diffusion and
any one, or combination of two, of the nine physicochemical
properties in Table L. Thus, we estimated other physicochemical
properties including the cohesive energy, E'co, of the polymer
using the Van Krevelen method. —Log D of aqueous diffusion
has a strong correlation with E’co, the R? value being 0.78 for
the six polymers in Table V. There is a moderate correlation
between bulk modulus, B, the principal correlation property
found for gaseous diffusion, and E’co, with R?> = 0.48. R?> =
0.16 for the correlation between aqueous log D and B for the
six polymers of Table V.

DISCUSSION

The most distinct finding from this QSPR analysis is that
the bulk modulus, B, of the polymeric material is far and away
the dominant polymer property which controls gaseous diffu-
sion in the material. This is not surprising in some ways since
intuitively the elasticity of a material would seem related to
how it “absorbs” other entities. However, it is surprising that
bulk modulus is so very dominant in the diffusion behavior,
and that other properties, also intuitively thought to be related
to diffusion control and to bulk modulus, such as cohesive
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energy density, are not often found in the optimized QSPR
models.

Little room for selective diffusion design is possible from
an analysis of the QSPR models of Table IV. The overwhelming
influence of B limits the potential of using other physicochemi-
cal properties to fine-tune diffusion behavior. As one would
expect, the positive value of the cross-corrleation coefficient
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Fig. 1. The GFA optimization plot of crossover operation number
versus descriptor usage in the evolving QSPR models for A) CO,, B)
N,, C) O,. Variables for which the use is not greater than 15 at any
point of the GFA optimization are not included in the figure.
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Table V. The Aqueous Diffusion Measures, Log D, for T = 25°C for
Six Polymers and the Corresponding Bulk Modulus, B, and Cohesive
Energy, E'co, Estimated Values

—log D B E'co

Polymer H,0 10° N/m? Jmol
Poly(ethylene terephthalate) 8.41 74 60340
Poly(ethyl methacrylate) 6.98 43 31870
Polyethylene 6.64 3.6 9880
Poly(methyl acrylate) 6.92 39 24690
Poly(e-caprolactam) 9.01 5.1 65950
Poly(vinyl alcohol) 8.90 35 43190

between B and —log (D) indicates that diffusion decreases as
bulk modulus increases. The “problem” with the dominance of
B in controlling gaseous diffusion is that diffusion selectivity
(the slight difference between values of B(max) for the three
gases in corresponding eqs. 2 and 3 in Table IV, indicates
selectivity) is enhanced at the expense of a diminished rate of
diffusion as represented by —log D. Dispersion field potential,
Eq, negative field potential, E_, and monomer mass, M, each
appear in other, slightly less significant, QSPR models than
those reported in Table IV for all three gases. M is found to
have a positive linear relationship whereas Ey and E_ have a
negative linear relationship with —log D for all three gases in
these models. The regression coefficients indicate a slightly
greater influence of these descriptors on —log D for CO, than
02 or Nz.

Perhaps the objective of the analysis should be to identify
how to minimize the —log D of O,. After all, O, is considered to
be one of the major sources of contamination and deterioration.
Unfortunately, the QSPR models constructed in this analysis do
not provide a hypothesis for limiting O, diffusion in polymeric
materials other than to suggest increasing bulk modulus.

The “semi-QSPR” model developed for aqueous diffusion
for six polymers may indicate a different diffusion “mechanism”
for water as compared to the three gases studied. Aqueous
diffusion correlates with cohesive energy of the polymer, but not
bulk modulus. Bulk modulus and cohesive energy moderately
correlate with one another. Cohesive energy is often associated
with the intrinsic stability of the polymer matrix, whereas bulk
modulus is associated with the capacity to deform the polymer
matrix. These core property differences may provide “windows”
to identifying possible mechanistic differences in diffusion.

Finally, the good news from this analysis is, a) the success-
ful generation of statistically significant diffusion QSPR mod-
els, and b) the identification of bulk modulus as the controlling
physicochemical property for gaseous diffusion. The bad news
is that it does not seem likely to be able to identify a polymeric
material with low bulk modulus so as to be useful in packaging
and other applications, yet have some other property, like a
large cohesive energy density which is highly correlated with
the bulk modulus, to limit gaseous diffusion, especially by O,.
The unresolved news is that the limited QSPR modeling of
aqueous diffusion in polymers is suggestive of a diffusion mech-
anism different from that of gaseous diffusion.
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